

River Gravel Management

Thriving and resilient Tasman communities

What we do

- For flood protection schemes (X river rated stop-banked areas)
 contain the design event
- For other maintained rivers (Y rated)

 bank erosion repairs and prevention only no guaranteed flood protection
- All other rivers (Z rated)
 - bank erosion repairs and prevention, with landowner contribution

Thriving and resilient Tasman communities

	Upper Motueka, Tadmor, Motupiko	Whole District
River X	-	\$585,000
River Y	\$30,000	\$429,000
River Z	\$10,000	\$1,022,000
Total	\$40,000	\$2,036,000

2021/22 – Work summary

		Upper Motueka		Tadmor		Motupiko		Other Rivers		Total
New rockwork										
	\$	256,278	\$	383,977	\$	329,590	\$	350,650	\$	1,320,495
Machine work										
	\$	328,853	\$	325,796	\$	314,321	\$	273,645	\$	1,242,615
Willow layering										
	\$	-	\$	409	\$	-	\$	1,630	\$	2,039
Willow planting										
	\$	4,629	\$	3,200	\$	759	\$	55,362	\$	63,950
Native planting										
	\$	-	\$	-	\$	-	\$	100,732	\$	100,732
Native plant maintenance										
	Ş	-	Ş	-	Ş	-	Ş	43,263	Ş	43,263
Fairway spraying								40.005		
out :	Ş	50,763	Ş	-	Ş	15,126	Ş	19,995	Ş	85,884
Other maintenance, data and	~		~		~		4	200.022	~	200.022
Tatal	Ş	-	Ş	-	Ş	-	Ş	299,932	Ş	299,932
lotal	÷	640 533	~	712 202	ċ	650 706	÷	1 145 200	4	2 1 5 0 0 1 0
	Ş	640,523	Ş	/13,382	Ş	659,796	Ş	1,145,209	\$	3,128,910

Thriving and resilient Tasman communities

Management of gravel

- gravel management is one of several tools for river management
- others include:
 - hard erosion protection (spur groynes, rip-rap)
 - vegetated edge protection (generally willow)
 - vegetated buffers (generally native)
 - channel clearance
 - stopbanks

Management of gravel

In our managed river networks (X&Y) we manage gravel to reduce flooding and erosion by:

- gravel relocation
- fairway spraying
- beach raking
- extracting gravel (or issuing gravel extraction permits)

We also support some of this work in other non-rated (River Z) catchments

Thriving and resilient Tasman communities

Gravel and flooding

- Determining flood capacity is not always simple not just x-sectional area but slope, channel roughness, channel shape also
- In large flood gravel mobilises, and beaches are deposited as flood recedes
- Hydraulic modelling best way forward, along with regular river survey
- Flooding not always bad, riparian plantings can control flood debris

Thriving and resilient Tasman communities

Maintaining flood capacity

Gravel extraction one method, we also undertake the following:

- Gravel relocation
- Control of woody weed growth in channel/beach raking (to a small extent)
- Topping up stopbanks
- Protecting stopbanks from erosion
- Control of berm land activities

River behaviour

- Bed levels at any one point are highly dynamic beds mobilise up to 3m depth in flood - hence we monitor average bed levels
- Rivers seek to maintain an ideal long profile and fills 'holes' by eroding bed upstream
- By controlling bank erosion we encourage bed erosion in transport zone
- Gravel will always build up on the inside of meanders due to flow characteristics

Thriving and resilient Tasman communities

Consenting of gravel river works

Global river works consents (issued March 2016)

• gravel relocation & beach raking

Land and aerial spraying consents (Dec 2015)

• fairway spraying

Extraction of gravel (Nov 2019)

• extracting gravel (or issuing gravel extraction permits)

Thriving and resilient Tasman communities

Gravel relocation

- Main benefit is not to increase flood capacity, but improve alignment to reduce pressure points
- Keeps gravels mobile
- A risk of being a temporary solution subsequent floods may relocate gravel
- Potential benefit in improving bird habitat

Thriving and resilient Tasman communities

Fairway spraying (& beach raking)

- Fairway spraying is to prevent
- woody weeds that lock up gravels
- Maintains gravel as a mobile bed
- Mechanical raking has similar
- benefits but more expensive

Gravel extraction

Our role is to extract or allow gravel extraction only for river management purposes, where it is the best practicable option, to:

- increase flood capacity
- maintain river alignment and prevent erosion
- maintain movement of sediment

This is explicitly stated in our consent

Gravel extraction

- Two types of control for gravel extraction in our consent:
 - "gravel envelope" rivers, where we know historical mean bed levels
 - all other rivers, TRMP limits apply

Any gravel extraction outside of the Mean Bed Level envelope river reaches exceeding the annual rates given below:

	Maximum annual gravel extraction without SSEMP (m ³)
Golden Bay Rivers	
Anatori River	1000
Aorere River	1000
Parapara River	500
Pariwhakaoho River	400
Anatoki River	1000
Takaka River	1000
Motueka Rivers	
Motueka River (middle, between the upper and lower MBL envelope reaches)	1000
Riuwaka River	100
Wangapeka River	100
Tadmor River	80
Buller Rivers	
Buller River	2000
Matakitaki River	1000
Howard River	1000
Mole Stream	1000
All other rivers	500
River reaches upstream of MBL envelope reaches	500

Thriving and resilient Tasman communities

Gravel extraction

- The gravel envelope approach attempts to identify whether particular rivers or reach are accumulating (aggrading) or losing gravel (degrading)
- Where rivers are aggrading, sustainable extraction is possible

Thriving and resilient Tasman communities

Risk of over extraction

- Over extraction leads to more hard bank protection works, risk to bridges and other assets & loss of groundwater
- Generally speaking, our rivers are not rapidly aggrading
- Our active riverbeds can often only provide a fraction of industry demand on a sustainable basis

Other sources of gravel

- Active river channels can only supply a fraction of demand, we are still building a long term picture of sustainable volumes
- Industry needs consistency of supply
- Land based extraction pits give opportunity for wetland creation, not subject to changes in river behaviour

Gravel envelope method

- Similar to many other regional authorities
- Used in larger rivers only requires regular survey of river bed
- Based on historical max and min bed levels to produce a 'design envelope'
- We managing to a bed level not volume
- We review following subsequent surveys to identify natural degradation or aggradation

Gravel envelope data requirements

- Five yearly survey of active channel or following flood events (>Q20)
- LIDAR for analysing changes to berm in X areas
- Quality aerial photography
- Used to determine average bed levels to determine trends over time

Gravel envelope data requirements

- We now collect aerial photos each time we survey and use GIS to assist with analysis
- We have begun to undertake 'full surface capture' surveys using LiDAR rather than just surveying the ground line at each cross section

GIS Overlays

- Terrain model overlaid with aerial photo
- Cross section locations are yellow Lines
- Active Channel Widths shown by red Lines
- Green plot shows model section halfway between the two

Improved gravel budgeting

- Since 2018 we have been using a new tool that combines river survey data to calculate actual inter-cross section volumes, as well as factoring in any gravel extraction undertaken
- Allows us to account for the extraction and get a better idea of what the 'natural' behaviour of the river would be in the absence of any river management intervention
- This means we identify the long term trend (aggradation or degradation) that the river would show if we didn't extract any gravel

Gravel Analysis Template

- This is the spreadsheet tool we are using
- It's the repository for much of the data
- Two key outputs are a trend line and summary page
- Every time a survey is completed the tool is updated with the new crosssection, volume and extraction data to provide analysis of the last period which is used to forecast extraction for the next period

Gravel envelope example

- Following slides relate to one point in the Upper Motueka River:
- Cross section and mean bed levels
- Long section
- Assess trends over time

Active Channel MBL 1988-2022 Longsections - Upper Motueka River

Thriving and resilient Tasman communities

Upper Motueka River - XS_52532

---- 1988 ----- 1995 ----- 2000 ----- 2004 ----- 2017 ----- Gravel Analysis Offsets

Thriving and resilient Tasman communities

Thriving and resilient Tasman communities

Gravel envelope

- Our consent limits extraction to the top half of the envelope
- In this example we can extract here as the 2022 bed level (black) is above the envelope mid-line
- We can extract from this area

Gravel envelope

- We can extract from this area
- Rivers staff will make a judgment whether extraction is a good option and on the best location to extract

2018 analysis

	Short Term Observation based on overall Average MBL Rate of Change	Longer Term Trend based on overall Average MBL Rate of Change	Notes
Motupiko	Degrading	Neglible movement	The lower river has had a relatively high level of extraction
Upper Motueka	Neglible movement	Degrading	Reasonable sized extractions appear not to have affected the bed level much
Lower Motueka	Aggrading	Aggrading slightly less	Reasonable sized extractions appear not to have affected the bed level much
Riuwaka	Slightly aggrading	Aggrading	Note this is due to build of of the berms rather than buildup within the gravel bed channel
Lower Takaka	Neglible movement	Strongly degrading	Only a small ammount extracted
Upper Takaka	-	Neglible movement	Only a small ammount extracted from main stem
Waimea	Aggrading	Strongly aggrading	We have since removed 60,000m3
Wairoa	Strongly degrading	Degrading slightly less	Very little extraction undertaken
Wai-iti	Neglible movement	Neglible movement	Little extraction carried out

Tasman District Riverbed Level Monitoring Results

December 2018 Tasman District (Updated 28/10/2021 with full size plots in appendix)

Abstract

This report looks at the current riverbed levels within main rivers managed by Tasman District Council

Giles Griffith

0

Update example – Upper Motueka

2017

asman

GRAVEL ANALYSIS NOTES (UPPER MOTUEKA RIVER)

1) The Upper Motueka River overall appears to be gaining gravel at a rate of 8,100 m³ per year.

2) The Upper Motueka River apprears to currently be in an aggredation phase; however, results indicate that the river did experience a degradation phase since 1988.

3) Any allocated extraction should only be taken downstream of XS 56355.

Mass Balance for A	All Reaches		
Reach	Trending Annual Rate (m³/yr)	Surplus/Defic it since 1988 (m³)	Surplus Volume only since 1988 (m³)
1 Cross Section 48,157 to 56,355	6,649	152,233	152,233
2 Cross Section 56,924 to 64,050	1,382	-8,454	
3 Cross Section 64,905 to 67,243	73	-7,400	450.000
	0,101	100,010	102,200
Value 2 - Overall Gravel build-up since 1988 152,233 i.e. th (m ³) the ag	s is the sum of the grading downstream	surplus gravels that reaches since 198	have built up in 8.
Estimated Sustainable Extraction Rate 8,100 (i.e. V	alue 1 above rounde	d down to the neare	st 100m³)
Estimated Sustainable Extraction Rate 8,100 (i.e. V Location Weighting of Sustainable Annual Extraction Reach	alue 1 above rounde on Rate Percent Veighting	d down to the neare Estimated S Estraction F	st 100m³) Sustainable Sate (m³/vr)
Estimated Sustainable Extraction Rate 8,100 (j.e. V Location Weighting of Sustainable Annual Extraction Reach	alue 1 above rounde on Rate Percent Weighting	d down to the neare Estimated S Extraction F	st 100m³) Sustainable Rate (m³ <i>l</i> yr)
Estimated Sustainable Extraction Rate 8,100 (j.e. V Location Weighting of Sustainable Annual Extraction Reach	alue 1 above rounde on Rate Percent Veighting 100.0% 0.0%	d down to the neare Estimated S Extraction F 8,1	st 100m³) Sustainable Rate (m³ <i>l</i> yr)
Estimated Sustainable Extraction Rate 8,100 (j.e. V Location Weighting of Sustainable Annual Extraction Reach	alue 1 above rounde on Rate Percent Veighting 100.0% 0.0%	d down to the neare Estimated S Extraction F 8,1	st 100m³) Sustainable Rate (m³/yr)

2022

GRAVEL ANALYSIS NOTES (UPPER MOTUEKA RIVER)

	Ma	ss Balanco	e for All Reac	nes		
	Reach		Tre F	nding Annual Rate (m ³ /yr)	Surplus/Deficit since 1988 (m³)	Surplus Volume only since 1988 (m³)
1	Cross Section 48157 to 56355	5		14 347	378 571	378 571
2	Cross Section 56924 to 64050) 1		6 4 9 9	201 760	201 760
3	Cross Section 6/905 to 672/3	2		2 034	68 550	68 550
Balanc	ce for Entire Study Reach	,		22,034	648 890	648 890
Value (m ³)	2 - Overall Gravel build-up since 1988	648,890	i.e. this is the	sum of the su	rplus gravels that h	nave built up in the
			aggraaing a	ownstream rea	iches since 1988.	
Est	timated Sustainable Extraction Rate	22,800	(i.e. Value 1	ownstream rea	iches since 1988. d down to the neare	est 100m ³)
Est Locati	timated Sustainable Extraction Rate ion Weighting of Sustainable Annual Extraction Reach	22,800 Rate	(i.e. Value 1	above rounde	ches since 1988. d down to the neare Estimated S	est 100m ³) Sustainable
Est	timated Sustainable Extraction Rate ion Weighting of Sustainable Annual Extraction Reach	22,800 Rate	(i.e. Value 1	above rounde	d down to the neare Estimated S Extraction F	est 100m ³) Sustainable Rate (m ³ /yr)
Est Location	timated Sustainable Extraction Rate ion Weighting of Sustainable Annual Extraction Reach Cross Section 48157 to 56355	22,800 Rate	(i.e. Value 1	above rounde Percent Weighting 65.2%	d down to the neare Estimated S Extraction F	est 100m ³) Sustainable Rate (m ³ /yr)
Est Locatio	timated Sustainable Extraction Rate ion Weighting of Sustainable Annual Extraction Reach Cross Section 48157 to 56355 Cross Section 56924 to 64050	22,800 Rate	(i.e. Value 1	Percent Weighting 65.2% 34.8%	d down to the neare Estimated S Extraction F	est 100m ³) Sustainable Rate (m ³ /yr)
Est Location	timated Sustainable Extraction Rate ion Weighting of Sustainable Annual Extraction Reach Cross Section 48157 to 56355 Cross Section 56924 to 64050 Cross Section 64905 to 67243	22,800 Rate	(i.e. Value 1	Percent Weighting 65.2% 34.8% 0.0%	ches since 1988. d down to the neare Estimated S Extraction F 14,9 7,9	est 100m ³) Sustainable Rate (m ³ /yr) 000

Challenges

- Gravel is a very visible aspect of river systems, often blamed for flooding and erosion
- Gravel relocation is expensive and often temporary
- Historic analysis relied on limited cross sections and missed activity between cross sections (now being resolved with full surface survey)

Thriving and resilient Tasman communities

Challenges

- High demand for concrete aggregate and sealing chip
- Excessive gravel extraction can cause more issues than it solves
- Communicating the way we calculate "mean bed level"
- Lack of resources in Environmental Information team (now resolved)

Thriving and resilient Tasman communities

Current status

- High demand for concrete aggregate and sealing chip
- In 2021 we estimated conservatively 250,000 cu.m of gravel available in the lower Waimea over next 5 years
- We issued permits for 110,000 cu.m in the Waimea in 2020/21
- We have re-surveyed all gravel envelope rivers (Waimea/Wairoa, Upper & Lower Motueka, Motupiko, Takaka) plus the Waingaro
- We are now re-assessing sustainable volumes for these rivers

Next steps

- LiDAR and drone survey is now complete and gravel model received
- This survey will enable us to determine whether these rivers are aggrading or degrading and the sustainable level of gravel extraction
- The Waimea/Wairoa and Lower Motueka had full surface capture in May 2021 so we will be able to undertake 'surface to surface' comparison with our cross-sectional analysis – expected soon
- We are investigating the costs and benefits of more frequent surveys

Thriving and resilient Tasman communities

